
© 2021 Zesty EBook 01

7 Pitfalls to Avoid
with



What Is Terraform? 4

Benefits of Using Terraform 5

Developed by HashiCorp 5

Seamless Multi-Cloud Infrastructure Deployment 5

Lower Development Costs 5

Quicker Deployments 5

Facilitates Cross-Functional Collaboration 5

Automated Infrastructure Provisioning and Documentation 6

Unified Scripting Language 6

Terraform Is Modular 6

Introduction 3

Storing Secrets in Plain Text 7

Storing State Locally 7

Missing Version Control for Modules and Providers 7

Non-Reusable Modules 8

Incorrect Directory Structure 8

Missing Configuration Documentation 8

Mismatching Terraform Binary Versions 9

The 7 Pitfalls to Avoid When Using Terraform 7

Conclusion 9

About Zesty 9

Table of C
ontents

© 2022 Zesty - 7 pitfalls of Terraform 02



Infrastructure automation is the backbone of the 
modern DevOps ecosystem, which requires frequent and 
faster deliveries across dynamic platforms. This 
automation minimizes the human effort required to 
maintain a tech stack by creating repeatable scripts 
and functions.

Infrastructure as code (IaC) is one approach that lets 
DevOps teams configure a system’s desired state using 
declarative specifications. This, in turn, helps 
organizations provision infrastructure rapidly while 
allowing for seamless integration between multiple 
deployment environments.

Infrastructure automation relies on various tools and 
processes for the automatic provisioning, deployment, 
and testing of infrastructure. Terraform is one of the 
most commonly used IT automation tools and provides 
a one-stop solution for IT infrastructure configuration 
and management issues. 

In this article, we delve into Terraform’s benefits as well 
as common misconfigurations and the best practices 
for avoiding them. But first, let’s briefly review what 
Terraform is.

Introduction

© 2022 Zesty - 7 pitfalls of Terraform 03



© 2022 Zesty - 7 pitfalls of Terraform 04

Terraform is an open-source, declarative configuration management system (CMS) designed to automate infrastructure 
provisioning through human-readable code. The platform relies on a state file containing all of the infrastructure’s 
configuration details. You can store this state file on any machine or server that has access to it and use it for both cloud-
native or on-premises setups. Along with the capabilities of deploying and changing the configuration of your infrastructure, 
Terraform also offers development standards like version control and testing. 

Terraform leverages a plugin-based architecture that consists of two major components: Terraform Core
and Terraform Plugins. 

Core compares the Terraform configuration file with the 
Terraform state file to apply configuration changes. To 
achieve the desired state, Core communicates with 
Plugins over an RPC.

Plugins consist of Providers and Provisioners that are 
executable binaries invoked by Core. Plugins allow you to 
integrate with various cloud platforms using external APIs. 

Figure 1: Terraform components (Source: HashiCorp)

What Is Terraform?

https://www.terraform.io/
https://www.hashicorp.com/blog/managing-google-calendar-with-terraform


© 2022 Zesty - 7 pitfalls of Terraform 05

There are numerous advantages to implementing Terraform, several of which we discuss below. 

Terraform was developed by HashiCorp, one of the largest known companies offering innovative open-source tools 
for infrastructure management. Terraform’s configuration file is written in a language that was specifically designed 
for HashiCorp tools, the HashiCorp Configuration Language (HCL). The language is both human and machine-friendly, 
and although it loosely resembles JSON, its capabilities are far more advanced. 

Benefits of Using Terraform 

Developed by HashiCorp 

Being cloud-agnostic, Terraform allows you to provision infrastructure across different cloud providers dynamically. A 
single configuration file can manage multiple cloud providers and resolves multi-cloud dependencies as well. 

Seamless Multi-Cloud Infrastructure Deployment 

The platform reduces your cost of development by offering on-demand environments. Using API calls and templates, 
developers can create and decommission environments in just a few easy steps. 

Lower Development Costs

Terraform automates the process of infrastructure deployment, making it faster and less error-prone. Additionally, 
infrastructure on demand helps provision seamless non-prod QA and load testing environments to facilitate rapid 
testing and delivery. 

Quicker Deployments

Terraform supports a DevOps model that facilitates seamless cross-functional collaboration among distributed 
teams relying on the same infrastructure and processes. This improves visibility and productivity while reducing root 
cause identification and resolution time. 

A typical collaborative workflow by Terraform (Source: HashiCorp)

Facilitates Cross-Functional Collaboration

https://www.hashicorp.com/blog/managing-google-calendar-with-terraform


© 2022 Zesty - 7 pitfalls of Terraform 06

Terraform facilities automated provisioning and configuration changes. The platform uses a source file to store 
configuration details representing the state of your infrastructure, which can be referred to across your organization.

Automated Infrastructure Provisioning and Documentation 

The platform supports the concept of modularity and reusability through Terraform modules. These are 
similar to containers, allowing you to group resources together and create reusable configurations that 
can be called by other environments.

Terraform Is Modular

Terraform uses a unified scripting language that acts as a baseline to modify scripts across multiple cloud providers.

Unified Scripting Language



© 2022 Zesty - 7 pitfalls of Terraform 07

Terraform files that contain declarative codes and variable declarations are usually maintained in a version control 
system (VCS) like Git for centralized access by cross-functional teams. 

Recommended practice: To ensure high security for sensitive information, like account credentials or private data, 
such information should not be committed in VCS repositories to prevent exposure to attack vectors. Instead, you 
should store such information in an encrypted format rather than hardcode it as plaintext in unencrypted files. 
You can avoid hardcoding sensitive data by:

Excluding commit files that may contain sensitive information from tools that use VCS (such as Gitignore)

Using environment variables to avoid using plaintext sensitive information in code

Storing sensitive information within the VCS in an encrypted format via encryption keys in internal/third-
party secret vaults

Once you build your infrastructure with Terraform 
configurations, a state file called terraform.tfstate is 
created in the local workspace directory. This state file 
records the details of all the infrastructure provisioned, 
which Terraform uses to refresh the configuration with 
the latest infrastructure before executing any operation. 
Storing files locally does not create any problems until 
the provisioned infrastructure is used in a silo. However, 
in a distributed team structure, keeping state files 
locally complicates Terraform usage, as each user in 
the team needs to ensure that they have the latest file 
with them and no other user is accessing it.

Recommended practice: It is best to maintain a 
remote state file and make Terraform write the state 
data in a remote data store called a backend. As 
recommended by HashiCorp, Amazon S3 is the most 
adopted method for a backend and is best paired with 
DynamoDB for state locking. Other commonly used 
remote backends include Terraform Cloud, Google 
Cloud Storage, and HashiCorp Consul.

Storing State Locally

While developing modules and specifying providers, 
developers often forget to pin their versions. This leads to 
a mismatch of local and remote versions while causing 
resolution overhead. 

Recommended practice: To ensure seamless upgrades 
and reduce compatibility issues, you should explicitly 
mention the required provider’s version in the 
configuration file. It is also recommended to pin the 
minimum provider versions each module is compatible 
with. Besides this, a module that is intended to be used 
as a root module should only provide a maximum 
provider version to prevent incompatible version 
upgrades. 

Pro tip: Use an IDE plugin, such as HashiCorp's language 
server to remind you of version locks and other best 
practices.

3.2.

Storing Secrets in Plain Text 1.

Missing Version Control for 
Modules and Providers

Although Terraform allows developers to provision infrastructure through configuration files, several misconfigurations 
commonly occur due to human error. Since writing the configuration is a manual task, standards are often ignored or missed. 
Below are some common pitfalls that developers should avoid and the recommended best practices to help you do so.

The 7 Pitfalls to Avoid When Using Terraform 

https://github.com/github/gitignore/blob/main/Terraform.gitignore
https://www.terraform.io/cli/config/environment-variables#tf_var_name
https://www.terraform.io/language/settings/backends/s3
https://www.terraform.io/language/settings/backends/s3
https://www.terraform.io/language/state/locking
https://github.com/hashicorp/terraform-ls
https://github.com/hashicorp/terraform-ls


© 2022 Zesty - 7 pitfalls of Terraform 08

Modules are an important element that promotes reusability and structured programming. A common mistake is to 
use a service-level structure as suggested, but later make changes to modules, expecting them to span across other 
environments. Developers can also tend to focus on designing modules to solve an immediate requirement and may 
overlook the longer-term, more comprehensive benefits of a generic module. 
In such cases, with every new requirement, developers then have to either write a new module or modify existing 
modules to incorporate changes, giving rise to countless versions of the same module. Apart from the issue of non-
reusability, this often leads to pushing improper versions of code to production or having to deal with the challenges 
of backtracking issues. 

Recommended practice: The suggested approach to overcome this is to create modules that are generic. Some 
characteristics of generic modules include: 

They perform only one operation.

They do not contain environment-specific details, allowing them to be used across different environments.

They are well-documented to make modification and adoption easier.

For the efficient application of changes across multiple environments, generic modules implement 
changes on the source instead of on the downloaded code.

As Terraform is designed to be flexible for use across 
various organizational structures, a common 
misconfiguration occurs when developers organize 
their codebase based on the resource type. On account 
of its non-modular and non-reusable modules, a 
resource-type directory structure tends to not be 
compatible with a growing infrastructure and will later 
require refactoring. 

Recommended practice: Use a directory structure 
based on the service level. This helps to isolate 
dependencies between the underlying repositories and 
enhance modularity. It is also recommended that you 
create separate repositories for each configuration to 
achieve faster module creation.

With a growing infrastructure and new requirements, 
developers are required to keep updating Terraform 
configuration files but often forget to document the 
changes due to lack of time.
Ironically, in the real world, most code complexities arise 
due to a lack of documentation. Without adequate 
documentation, debugging is often a herculean task 
that impacts the efficiency and timeline of an SDLC.
 
Recommended practice: Organizations should 
implement strict and clear policies on code 
documentation. Developers can additionally leverage 
features of the Terraform HashiCorp Configuration 
Language (HCL) to document variables and outputs, or 
add comments along with configurations. 

6.5.

Non-Reusable Modules4.

Missing Configuration 
Documentation

Incorrect Directory
Structure 



© 2022 Zesty - 7 pitfalls of Terraform 09

Binary version mismatch occurs when the whole team works on a pinned version of a Terraform binary while one 
member of the team upgrades the binary to a different version and applies it locally. This breaks the entire pipeline 
and forces all other members of the team to upgrade their binary version to the newest one. 

For any mismatch in the binary, Terraform is traditionally known to return errors that are complex to comprehend, 
thereby making backtracking and debugging a tedious job. 

Recommended practice: A typical approach to solving version mismatches is by following version constraints, 
which help enforce an acceptable version range to avoid known incompatibilities. Setting version constraints also 
helps make any returned error messages less ambiguous for efficient debugging. Another recommended practice 
is to run Terraform builds through an automated CI pipeline. In such instances, the build is initiated with the pipeline 
to ensure a unified environment and avoid mismatches.

Gartner has predicted that the significance of automation will continue to rise to the extent that “[B]y 2025, more than 
90% of enterprises will have an automation architect.” On top of this, Gartner also projected that “by 2024, 
organizations will lower operational costs by 30% by combining hyperautomation technologies with redesigned 
operational processes.”

As the infrastructure of your organization grows, there will be challenges pertaining to increasing complexity and
sub-optimal productivity. Although embracing automation supported by tools such as Terraform simplifies 
infrastructure operations at scale, developers need to be aware of the pitfalls often faced when implementing these 
tools and take proper action to avoid or manage them. 

Conclusion

Zesty is the world’s first AI-driven cloud management technology that auto-scales cloud resources to fit 
real-time application needs. As today’s cloud environments become increasingly dynamic, Zesty 
automates cloud efficiency, improves DevOps productivity, and reduces cloud costs with zero human input. 
As a result, DevOps engineers no longer need to spend time on repetitive, and mundane infrastructure 
management tasks and can enjoy the cloud’s flexibility and scalability without worrying about cost or 
maintenance concerns. Zesty was founded in 2019 in Tel Aviv and is used by leading organizations such as 
Armis, Gong, Yotpo, and others. For more information, visit Zesty.co.

About Zesty

Mismatching Terraform Binary Versions7.

https://www.terraform.io/language/expressions/version-constraints
https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-impacting-infrastructure-operations-for-2020
https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-impacting-infrastructure-operations-for-2020
https://www.gartner.com/en/newsroom/press-releases/2021-04-28-gartner-forecasts-worldwide-hyperautomation-enabling-software-market-to-reach-nearly-600-billion-by-2022
https://zesty.co/

	Terraform01
	Terraform02
	Terraform03
	Terraform04
	Terraform05
	Terraform06
	Terraform07
	Terraform08
	Terraform09



