
© Zesty - Terraform Cheatsheet 01

Like anything else, to get maximum outcomes it helps to follow best practices, and Terraform is no different. Managing states optimally won’t

force you to waste time later on reviewing infrastructure pieces. Good examples of this include, managing state in a remote system, running

Terraform from a centralized system where you can implement CI, maintain Terraform in a single code base, but separate the state into logical

components through a structured hierarchy. Another golden rule is not to manage the entire system in a huge state, this causes very long-

running timelines and makes it vulnerable to human error. If you need to touch specific code, it’s best to manage it from different states.

 terraform init Initialize directory, pull down providers.

 terraform init -verify-plugins=false Initialize directory, do not verify plugins for Hashicorp signature. This can be useful for

custom plugins.

 terraform plan-outplan.out Output the deployment plan to plan.out.

 terraform plan-target=aws_instance.my_ec2 ent Only use when absolutely necessary and then test against entire resources and not any

specific one.

Plan

Destroy
 terraform destroy Convenient way to destroy all remote objects. Command accepts most of the options that are accepted by terraform

apply.

 terraform plan -destroy Create a speculative destroy plan to see what the effect of destroying would be. Showing you the changes

without executing them.

 terraform workspace new mynewworkspace Used to create a new workspace. Know before you start what workspaces are and

whether they suit your workflow needs.

Workspaces

Initialize work directory

 terraform apply -auth-approve Destroy/cleanup deployment without being prompted for “yes”. This applies to 90% of actions and is

only used in automatic systems. When running from your own machine, try to avoid so you can preview changes before applying them.

 terraform apply -parallelism=5 The number of simultaneous resource operations. Some resources are dependent on others, if you run resources in

parallel things tend to break, so when you use parallelism make sure you can and that it won’t break anything.

 terraform apply -var my_region_variable+us-east-1 Pass a variable via command-line while applying a configuration. Best

practice is not to add var through the command line but to add a var file -var-file secret.tfvars. Allows you to keep track of what was

changed and track the variables for deployment, as opposed to running a single command that may not have the history of what

you’ve used previously.

Apply

Know your Terraform Cheatsheet

https://zesty.co/
https://zesty.co/

© Zesty - Terraform Cheatsheet 02

As a general rule, don’t manipulate anything regarding your state. Wherever you’re at in relation to your state, if you find yourself

manipulating something this means that something wrong has happened and an underlying problem needs to be fixed.

 terraform state list List all the resources tracked in the current state file.

 terraform state pull > terraform.tfstate To download and output Terraform state to a file. Make sure you have some

sort of state system, don’t want to manage this on files.

 terraform state show aws_instance.my_ec2 Show details stored in Terraform state for the resource.

 terraform state mv aws_iam_role.my_ssm_role module.custom_module To get into state option, move

resources to a different module.

 Taint resource to be recreated on next apply.terraform taint aws_instance.my_ec2

 terraform untaint aws_instance.my_ec2 Remove taint from a resource.

 terraform force-unlock LOCK-ID Force-unlock a locked state file, LOCK_ID is provided when the state file is already locked.

Taint/Untaint

 terraform providers Get information about providers used in current configuration.

 terraform version Display Terraform binary version, also warns if a version is old.

 terraform get -update+true Download and update modules in the “root” module. Worth experimenting on.

Miscellaneous commands

Tips to test out interpolations

 echo ‘join(“,”,[“foo”,”bar”])’ | terraform console Echo an expression into terraform console and see its expected result as output. This can

help you to debug and make sure your code is comprehensible in very specific sections of language.

Console

 terraform fmt

 terraform validate

 terraform validate -backend=false

 Format code per HCL canonical standard.

 Validate code for syntax.

 Validate code skip backend validation.

Format and validate code

State Manipulation

 terraform graph | dot-Tpng > graph.png Produces a PNG diagram showing relationship and dependencies between Terraform

resources in your configuration/code. May be worth playing around with to get some additional insights.

Dependency Graphing

 terraform import aws_instance.new_ec2_instance i-abcd1234 Import EC2 instance with id-abcd1234 into the Terraform

resource named “new_ec2_instance” of the type “aws_instance”.

 terraform apply - parallelism=5 The number of simultaneous resource operations. Some resources are dependent on others, if you run resources in

parallel things tend to break, so when you use parallelism make sure you can and that it won’t break anything.

 terraform output List all outputs as stated in code.

 terraform output instance_public_ip List a specific declared output.

 terraform output -jason List all outputs in JSON format. At the end of every run can output some variables.

This function lets you interact with outputs.

 terraform import aws_instance.new_ec2_instance[0]’i-abcd1234 As above, imports a real world resource into an instance of Terraform

resource.

Import and Outputs

https://zesty.co/

	Terraform01
	Terraform02

